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Abstract—We evaluate the groundwater (GW) storage under the state and the city of São Paulo using remote data provided by NASA's 
Gravity Recovery and Climate Experiment (GRACE) in the context of the water shortage crisis in 2013-2014. The study provides a GW 
forecasts based on Least Square Support Vector Machine (LS-SVM) for GRACE and Global Land Data Assimilation System (GLDAS). The 
study emphasizes the strong correlation between GRACE data and the differential volumes of the city main water supply system further 
enhancing the reliability of the LS-SVM forecast. We provide an equivalent water thickness forecasts of ground water time series and show 
that GRACE generalization is better than that obtained with GLDAS data together with error estimates. A minimum around 22 months was 
found as the optimum amount of past information to be used in the regressor to minimize forecast error. 

Index Terms—GLDAS model, GRACE mission, gravimetry, groundwater usage, LS-SVM, remote sensing, support vector 
machines,watershortage crisis. 
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 1 INTRODUCTION

he distribution of water in the atmospheric circulation has 
shown significant modifications in the last decade possi-
bly as a side effect of climate change, besides population 

growth [1][2]. This phenomenon manifests itself as an abrupt 
change in the rain regimes, posing significant risks to many 
populations[3]. Both severe droughts in over populated 
areas[4][5] and extreme rain events in lowlands [6], often irre-
gularly occupied, constitute threatening scenarios against 
which intergovernmental actions are being discussed [7]. 
However, from the point of view of urban planning and gov-
ernment, lack of water is far more damaging: it is estimated 
that, by 2025, more than two billion people will be living un-
der water shortage regimes [8][9]. Since water demand in the 
world is not equally distributed among the several economic 
sectors, significant challenges are expected in the case of an 
enduring and generalized water crisis. 

Local water crises have been registered in several parts of 
the world, some examples are: Canada [10], Europe [11], the 
Middle East [12], Australia[13], China [14], India [15][16] and 
Africa[17]. Global trends in population growth are the major 
factor contributing to these episodes; however, it is not less 
important to monitor the role played by climate change 
[18][19].Latin America is recognized as a region of water ab-
undance, which does not mean water is a readily available 
resource [20]. In Brazil, in spite of the existence of places with 
chronic water shortage under semi-arid regimes [21][22][23], 
water has been regarded as an abundant resource especially in 

the southern parts of the country where most of the popula-
tion lives.  The presence of a giant aquifer linked to the Paraná 
basin in south Brazil [24][25], together with special hydrologic 
cycles associated to the Amazon basin [26][27], significantly 
increase the hydric potential of four important states in the 
south which are: São Paulo, Paraná, Santa Catarina and Rio 
Grande do Sul besides north Argentina, Paraguay and Uru-
guay. However, water abundance in a country does not imply 
in climate change invulnerability. Since 50% of Brazil GDP is 
linked to renewable resources[28], water dependence makes 
slight changes in its availability a potential threat to the eco-
nomic basis. Lack of water will surely affect agriculture and 
other eco sustainable resources in Brazil as already predicted 
in several works [29][30]. 

T 
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Table 1 São Paulo city WSS with information about number of 
inhabitants (in millions), water flow (liters per hour), historical 
average precipitation (HAP) and accumulated precipitation 
(AP) for the 2013-2014 period. Observed variations at each 
WSS in the crisis period are also given in the last column. 
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An iniquitous side of a continuous water shortage mani-
fested already with a water supply crisis never seen in the last 
85 years in the largest Brazilian city. São Paulo city climate is 
generally humid, with most rains (and floods) concentrated in 
January-March. Yet, by mid-2013, São Paulo frequent floods 
ceased to be a problem with an abnormal lack of rain which 
caused a drop of more than 40% in the average volumes of the 
city main Water Supply System (WSS). Coincidently, the situa-
tion had some parallel elsewhere[34]given the location size 
and the amount of people involved. Detailed information 
about São Paulo city WSS [31][32] is provided by SABESP (São 
Paulo State Sanitation Company) and can be seen in Table 1, 
with water flows up to 40000 liters per hour, together with 
historical average precipitation (HAP) and recorded values for 
2013-2014[33]. As this table shows, the most severe water defi-
cit was observed in Cantareira system, which serves the larg-
est population. 

The aim of this work is to correlate and forecast possible 
trends in the water pluviometric cycle (as available through 
SABESP time series) with equivalent water thickness (EWT) as 
a measure of groundwater (GW) under the city of São Paulo 
using NASA Gravity Recovery and Climate Experiment 
(GRACE [35][36]) and Global Land Data Assimilation Systems 
(GLDAS[37]). With the availability of GRACE and GLDAS 
data, we use GW time series as an alias for pluviometric data, 
disregarding losses due to evapotranspiration and water com-
sumption by the population, and by adjusting a special regres-
sor using Support Vector Machines. The use of statistical 
learning tools for climate forecast renders possible the imple-
mentation of predictive machines for the entire land surface of 
the globe. Due to the intrinsic complexity of climate systems, 
the use of methods not dependent on first principles but on 
data learning seems specially indicated to further reduce fore-
cast uncertainty.These methods may be used to extract infor-
mation from the pseudo-periodicity found in many climate 
signals. In this sense, the lack of a recurrent peak in GRACE 
EWT in the time series of São Paulo city was a unique oppor-
tunity to test such methods in their ability to predict system 
behaviour in the post-crisis time. GRACE EWT results are 
presented in Section 2.3. This work studies the generalization 
error associated to such data driven methods as a potential 
tool to improve the forecast power for the GW dynamics in 
time. 

2 DATA AND METHODS 
2.1 Problem description 
The State of São Paulo is located in the southeast part of Brazil, 
between the States of Paraná and Rio de Janeiro. Its capital, the 
city of São Paulo, southeast of the state, is the largest city in 
Latin America whose economic and social importance may be 
measured by some of its numbers: the metropolitan area hosts 
11 million people (it is the largest city in the southern hemis-
phere) and is responsible for 11% of Brazil's GDP. São Paulo 
city occupies an area of about 8000 km2 in the Tietê river basin 
with two tributaries, Tamanduateí and Pinheiros. With the 
city proximity to the ocean, the climate is mainly humid (80%), 
with mild temperatures in winter (May-Aug, 17.1oC), and a 

moderate summer (Dec-Mar, 22.1oC) as compared to other 
Brazilian cities. Average monthly precipitation runs from 43 
mm in winter to over 200 mm in summer, causing frequent 
urban floods that are further enhanced by the growing imper-
viousness of urban soil. The city area is circumscribed by a 
square of coordinates 23.401o S, 46.791o W and 23.981oS and 
46.151oW. 

The city management and distribution water systems are 
well described in [38]. Following[33], here we provide some 
updates after the drought of 2013 and concentrate on Canta-
reira WSS [39] which, being the largest municipal storage sys-
tem (responsible for supplying 34.1% of the city population), 
shown the most severe water shorage as indicated by Table 1. 
Cantareira WSS has a total volume of 1495hm3 and is located 
north of the city. The system is formed by six dams along five 
basins (rivers: Atibainha, Cachoeria, Jacareí, Jaguariand Ju-
query) interconnected by a complex network of tunnels, chan-
nels and pumping stations necessary to overcome the physical 
barrier of Cantareira ridge. SABESP is a public-held conces-
sionary responsible for exploring watersheds, according to a 
directive plan encompassing a large region including the met-
ropolitan area and Cantareira. However, companies are only 
responsible for collecting, treating and distributing water. 
According to this model, the federation (through ANA, or the 
Federal Water Agency) is responsible for managing the usage 
of untreated water or deciding the level of priority among 
several users (e. g., switch between irrigation and water sto-
rage). A federal law warrants the priority of humans and ani-
mals in case of severe drought. 

From Oct-13 to Feb-14, the accumulated precipitation on 
the city amounted to 444 mm while the average level for the 
same period is 995 mm, triggering the crisis, Fig. 1(a). The 
previous minimum occurred by the end of 2003, with a similar 
behaviour in other systems (Figure 1(b)-(f)). On the other 
hand, the operation of WSS such as in Fig. 1(d), (e) and (f), 
close to volume saturation for long periods in the past, indi-
cate that water has not been properly stored or, at least, water 
excess has not been properly managed. Others could interpret 

Figure 1Recorded volumes in percentagefrom Sep-02 to Sep-15 for 
São Paulo main WSS: (a) Cantareira, (b) Alto Tietê, (c) 
Guarapiranga, (d) Alto Cotia, (e) Rio Grande and (f) Rio Claro. 
For Cantareira WSS, values below 0% mark the end of the gravity 
assisted pumping level. 
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such plots as another manifestation of climate change: how 
can one explain the existence in time (< 5-year interval) of 
such highly disparate hydrologic regimes?  

Cantareira WSS water throughput in 2014 reduced to 1/4 of 
the annual average. Since this average is 44.1+/-12.4 m3/s, 
statistically, the drought had 0.4% chance of occurrence.  The 
former “absolute” minimum recorded for this system was in 
the year 1953 (~25 m3/s against 11 m3/s in 2014). On Oct-14, 
the minimum volume was reached corresponding to 2.9% of 
the total capacity contrasting with the last maximum on Jan-10 
(~100%). The crisis was managed by applying several policies 
including supply rotations (compulsory water supply reduc-
tion per capita), incentives to saving water (bonus program), 
transference of treated water from other systems, reduction in 
the average time for fixing leakages and other loss prevention 
actions. The city of São Paulo has near 2000 wells pumping 
about 10 m3/s from the São Paulo acquifer (associated to the 
Alto Tietê basin[40][41]), nearly the same throughput value 
extracted from Cantareira after reduction. This is not an up-
dated number, since the crisis increased the number of wells 
considerably, thus enhancing the importance of assessing GW 
potential. 

2.2 LS-SVM 
The least square support vector machine (LS-SVM) technique 
[42] is the evolution of a binary classification method in the 
scope of Vapnik-Chervonenkis statistical learning 
theory[43].The main application is to propose generalizations 
functions for time series. The method is recognized as provid-
ing accurate generalization [44] for a large class of time series, 
including chaotic ones[45]. The method has been tested in a 
variety of contexts ranging from financial[46]to climate sys-
tems [47][48][49][50][51]. 

Essentially, the training process is reduced to an optimiza-
tion problem in which input vector of the type {𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖}, 𝑖𝑖 =
0, … ,𝑁𝑁, is used to find the optimal solution for the function 

 
𝑦𝑦 = 𝒘𝒘𝒕𝒕𝜑𝜑(𝑥𝑥) + 𝑏𝑏  (1) 

where 𝑁𝑁 is the size of the training set, 𝑥𝑥𝑖𝑖 ∈ ℝ𝑝𝑝 ,𝑦𝑦 ∈ ℝ and 𝜑𝜑(𝑥𝑥) 
is a predefined function. Here 𝑝𝑝 is the dimension of the train-
ing input vector and 𝑦𝑦 is the output. The solution provides 
suitable values for the vector 𝒘𝒘 and the scalar 𝑏𝑏 along with the 
choice of a kernel function 𝜑𝜑(𝑥𝑥) which depends on other pa-
rameters. Due to its unique generalization features, only the so 
called “Gaussian kernel” was regarded in this work, that is, 
functions of the type 

𝐾𝐾(𝑥𝑥′ ,𝑥𝑥′′ ) = 𝑒𝑒𝑥𝑥𝑝𝑝 �
−‖𝑥𝑥′ − 𝑥𝑥′′‖2

2𝜎𝜎2 � ,                       (2) 

with 𝜎𝜎 a tuning parameter. From the practical point of view, 
after optimization, the estimated value will be given by 

𝑦𝑦(𝑥𝑥) = �𝛼𝛼𝑖𝑖𝐾𝐾(𝒙𝒙,𝒙𝒙𝑖𝑖) + 𝑏𝑏,                             (3)
𝑁𝑁

𝑖𝑖=1

 

where the set {𝛼𝛼} contains Lagrange multipliers of the original 
problem[42]. Such problem may be reduced to solving the 

(𝑁𝑁 + 1) × (𝑁𝑁 + 1) linear system 

�0
𝒚𝒚� = � 0 𝟏𝟏

𝟏𝟏𝒕𝒕 Ω + 𝛾𝛾−1𝟏𝟏� �
𝑏𝑏
𝜶𝜶� ,                           (4) 

with 𝛾𝛾 a optimization parameter, Ω𝑖𝑖𝑖𝑖 = 𝐾𝐾(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑖𝑖 ), 𝟏𝟏 = (1,1, … ,1) 
and 𝒚𝒚 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁  ).  

We call 𝑛𝑛the regression order or the position of the time 
advanced point for which a numerical forecast must be ob-
tained[52]. That is, (1), the value of 𝑦𝑦 refers to the point 𝑥𝑥𝑛𝑛  not 
necessarily the immediate advanced point after the last series 
element. The regressor dimension 𝑝𝑝 is essentially the number 
of previous points in the training set, therefore, is proportional 
to the amount of past information. Solving (4) for a given pair 
(𝜎𝜎, 𝛾𝛾) does not guarantee the best solution. The search inthis 
space requires a validation set for which a measure of distance 
[53]between validation and forecast should be minimized. 
Thus, input data are divided into two sets of size 𝑁𝑁𝑇𝑇  (training) 
and 𝑁𝑁𝑉𝑉  (validation), so that the effective instances of available 
points for training and validation are, respectively, 𝑁𝑁𝑇𝑇 − 𝑝𝑝 −
𝑛𝑛and𝑁𝑁𝑉𝑉 − 𝑝𝑝 − 𝑛𝑛. We take the size of 𝑁𝑁𝑉𝑉as nearly 𝑁𝑁/3 and, for 
each regressor order 𝑛𝑛, distinct optimal values for the 
pair(𝜎𝜎, 𝛾𝛾) must be found. Also since, during validation, the 
variance of the regression values in relation to the real data 
can be calculated for each order (which is proportional to the 
residue of the distance), estimates for the regression errors can 
be calculated as the best standard deviation found during 
validation. The residue should be minimized not only for the 
(𝜎𝜎, 𝛾𝛾)pair, but also for 𝑝𝑝 or the number of recursive past points 
to be included in the regression function (3). The search for 
optimum parameters was undertaken using Particle Swarm 
Optimization, PSO[54][55]. New tuning parameters randomly 
chosen on the (𝜎𝜎, 𝛾𝛾)plane were found. These were based on an 
iterative procedure during which the value of the distance 
residue is used to orient the “swarm” toward the optimum 
solution. Optimum values are found and compared among 
several 𝑝𝑝, so that an optimal regressive model is found. 

2.3 Applying LS-SVM to GRACE and GLDAS data 
As result of a NASA and DLR (Deutsche Forschungsans-
taltfürLuft und Raumfahrt) partnership, March 2002 saw the 
launching of the twin satellite GRACE[56] as a very successful 
enterprise resulting in a time dependent matrix of gravimetric 
data for the entire surface of the Earth. GRACE is capable of 
estimating the stored GW as an EWT [57] after a series of steps 
[58][59] in which mass anomalies (measured as anomalies in 
the gravity field) are inferred based on differences in the 
tracked orbital positions of both satellite elements. GLDAS is 
distinct join effort by NASA and Goddard Space Flight Center 
to integrate remotely sensed and ground data and constraint 
surface state models in order to render maps of ground water 
and energy storage[59][60]. These fields provide valuable 
information for assessing a variety of processes such as pre-
dicting climate change, productivity in agriculture, weather 
and other hydrologic phenomena. Moreover, groundwater 
maps can be compared to GRACE water equivalents[60]. 
Therefore, regression functions for both GRACE and GLDAS 
time series were obtained in this work. 
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However, before blindly accepting GRACE and GLDAS 
data, it is important to remark the following facts: (i) in order 
to reduce errors, GRACE data must be averaged over large 
areas. In the present study, the influence of draught was so 
severe that such averaging need is of lesser concern in spite of 
still be present. For this reason, we concentrate our analysis to 
Cantareira WSS which showed the worst situation. Thus for 
São Paulo WSS typical errors at 1 km scale are about 6 cm [35]; 
(ii) GRACE time scale is alsonot accurate and not even 
represents a monthly average, once GRACE signal is the result 
of distinct satellite passages which are optimized to enhance 
low power signals;(iii) there is an intrinsic time delay in the 
release of GRACE data which contributes to reduce GRACE 
data as forecast tool; (iv) GLDAS is a modeling tool and does 
not constitute measure data. Water amounts in this model can 
be adjusted to suit the atmosphere state without any water 
balance preservation.With all these observations in mind, in 
this paper, we pioneered in applying LS-SVM methods to 
GRACE and GLDAS data with a backtesting perspective. 

GRACE EWT data under the State of São Paulo for Oct-10 
and Oct-14 are shown in Fig. 2. Negative values are associated 
to a negative trend in relation to the average baseline. Thus, 
for the month of October, EWT is usually negative, but the 
scenario of Oct-14 was unique. It is also apparent that the 
thickness gradient toward the north of the state has also in-
creased from 2010 to 2014 with a much more severe water 
depletion on Oct-2014. Monthly data from GRACE and 

GLDAS encompassing a period of ~12 years and the equiva-
lent SABESP time series for Cantareira WSS are shown in Fig. 
3. This plot compares Cantareira precipitation in mm (Fig. 3(a) 
- left axis), Cantareira WSS percent differencial volume dV 
(Fig.4(b) - right axis) from Fev-03 to Sep-15 and two plots of 
GRACE and GLDAS EWTs (Fig.4(b)) for nearly the same pe-
riod (GRACE lacking points are due to data unavailability). 
Average and standard deviation for these series are 1±6 cm for 
GRACE, 0±5 cm for EWT GLDAS, 123±98 mm for the precipi-
tation and 0±5% for dV in the period Jan-03 to Jan-15. The 
largest and smallest values, respectively, for this period were 
14.2 cm (Feb-03) and -7.9 cm (Sep-03) for EWT GRACE, 9.38 
cm (Jan-10) and -17.79 cm for EWT GLDAS, 486 mm (Jan-11) 
and 0.0 mm (Aug-07) for the precipitation and 17.8% (Jan-11) 
and -8.4% (Aug-03) for dV. The second smallest EWT GRACE 
level was -6.90 cm in Jan-15. While the steepest change in dV 
was observed on Aug-03, the fall by late 2014 was the most 
severe in the total volume as shown by Fig. 1(a). Comprehen-
sively, dV is affected by water consumption; nevertheless, 
there is a strong correlation between the differential volume 
(the derivative of Fig. 1(a)), precipitation and GRACE/GLDAS 
series data as the following measures indicate. 

Admitting 𝑅𝑅𝑥𝑥𝑦𝑦 (𝑥𝑥𝑘𝑘+𝑙𝑙 ,𝑦𝑦𝑘𝑘) as Pearson's  correlation coefficient 
between two sequence of data𝑥𝑥𝑘𝑘+𝑙𝑙and𝑦𝑦𝑘𝑘 , shifted by a chosen 
integer value 𝑙𝑙, Table 2 brings the main values found for São 
Paulo data. The series are well correlated for pairs such as dV-
P and GLDAS-dV, but maximum correlation was found for 
𝑙𝑙 = 1 in dV-GRACE and 𝑙𝑙 = 2 in P-GRACE. 

Figure 2 "Iso-thickness" line using GRACE data 
for EWT (in cm) for the São Paulo state in (a) 
Oct-10 and (b) Oct-14. Map border indicates the 
positionof all São Paulo municipalities with 
São Paulo city highlighted in grey at the 
southwest part of the state. 

Figure 3(a) Monthly accumulated precipitation (P) in mm and 
Cantareira volume percent derivative (dV) from Fev-03 to Sep-15. 
(b) GRACE and GLDAS EWT for the city of São Paulo from Fev-
03 to Apr-15. 

Table 2Correlation coefficient for pairs of time series data as indi-
cated. The value of l is an integer to representing time lag among 
adjacent data. 
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3 RESULTS AND DISCUSSION 
3.1 Training and validating data 

The lack of Dec-13 to Mar-14 recurrent peak as shown in 
Fig. 3 provided the unique opportunity for testing the applica-
tion of a LS-SVM regression in 2015. The first attempt of using 
GRACE EWT was made around Jan-15 in order to estimate 
peak future presence (intensity and time). Since GRACE data 
are provided with four months delay, SABESP time series was 
used as a proportional indicator for EWT enabling updated 
confirmation of equivalent forecasts. LS-SVM training and 
validation size sets were:𝑁𝑁𝑇𝑇 = 153(dates from May 1 2002 to 
January 1 2015) and𝑁𝑁𝑉𝑉 = 51. A search for the best regression 
dimension p for a given n was done in order to minimize the 
measure: 

𝜎𝜎𝑉𝑉2(𝑛𝑛, 𝑝𝑝) =
1
𝑁𝑁𝑉𝑉

��𝑦𝑦 − 𝑦𝑦�𝜎𝜎 ,𝛾𝛾(𝑥𝑥𝑖𝑖 ,𝑛𝑛, 𝑝𝑝)�2
𝑁𝑁𝑉𝑉

𝑖𝑖=1

,                    (5) 

where 𝑦𝑦� is given by (3). Search results are shown in the top of 
Figs. 4 and 5. As expected, the regression error increases with 
n- the number of months in the future for the forecast. How-
ever, for the regression dimension, there is a minimum around 
𝑝𝑝 = 22 months, implying that if more information than 22 
months is used, the regression loses accuracy. The further 
decrease in 𝜎𝜎𝑉𝑉  for𝑝𝑝 > 26 is due to the reduction in the number 
of validation points in the training set. As a measure of period 
relevance, bottoms of Figs. 4 and 5 bring plots of the absolute 
value of the FFT for GRACE and EWT autocorrelation func-
tions[61], respectively: 

𝑟𝑟(𝑘𝑘) = 〈(𝑦𝑦𝑖𝑖 − 〈𝑦𝑦𝑖𝑖〉)(𝑦𝑦𝑖𝑖+𝑘𝑘 − 〈𝑦𝑦𝑖𝑖〉)〉                     (6) 

as a function of the number of months, with the symbol 〈 〉 
denotes the expected value function.The second maximum 

occurs around 32 months (2.6 years) and correspond probably 
to weak long period recurrence. The corresponding spectrum 
for GLDAS only shows the main peak, which is understanda-
ble since LDAS does not include GW and surface components 
such as lakes and rivers [62][63]. Although GRACE and 
GLDAS are often described as in agreement with each oth-
er[60], their respective power spectra are quite distinct. 

3.2 LS-SVM forecasts for GRACE data 
Fig. 6 and 7, respectively, exhibits superimposed GRACE 

and GLDAS data to their LS-SVM forecasts during validation. 
As can be observed in each of these figures, the regression 
results for GLDAS (Fig. 7) are not as good as those obtained 
using GRACE (Fig. 6). Each plot corresponds to different val-
ues of n 
follow the trend of GLDAS data along several months, there is 
an apparent detachment in the last months of 2014. In this 
calculation, the regressor dimension p was changed so that the 
best fitting was attained for the pair (𝑛𝑛, 𝑝𝑝). 

The accumulated monthly precipitation over Cantareira can 
be used as an advanced indicator in good correlation with the 
EWT. Hence GRACE data series until Jan-15 was used to ob-
tain EWT forecasts for the first three months in 2015 as shown 
in Fig. 8(a). This plot shows, on the left axis, EWT and LS-SVM 
forecasts in cm together with the precipitation in mm on the 
right axis. GRACE signal lags behind precipitation so that, by 
Jan-15, the perspective of a peak resurgence could be read in 
the precipitation data and was confirmed by the LS-SVM re-
gressor using GRACE data. It is apparent in Fig. 6, that LS-
SVM slightly increased from Jan-13 to Jul-14 when the peak 
should have occurred in the original GRACE data.  For the last 

Figure 5(Top) Validation regresson errors for several LS-SVM 
models as a function of p and n, the regressor dimension and 
order for data of Fig. 2. (Bottom) FFT of GLDAS signal autocor-
relation as a function of mong number for 𝜎𝜎 = 3 and 𝛾𝛾 = 20. 

Figure 4(Top) Validation regresson errors for several LS-SVM 
models as a function of p and n, the regressor dimension and 
order for data of Fig. 2. (Bottom) FFT of GRACE EWT signal 
autocorrelation as a function of mong number for 𝜎𝜎 = 2 and 
𝛾𝛾 = 22. 
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GRACE EWT available (until Apr-15), the same series contin-
uation is shown in Fig. 8(b), indicating an EWT intensity 
equivalent to the May-Jun of 2013, and also in accordance to 
the corresponding precipitation of that period. 

 

 
 

4 CONCLUSION 
In this paper we applied remote sensing data such those as 
provided by GRACE satellite to study their correlation with 
surface (SABESP) and modelled data (GLDAS). We confirm 
the correlation between precipitation and watershed differen-
tial volume using Cantareira as the worst case scenario ob-
served during 2013-2014 crisis. As shown in Table 2, such 
correlation is particularly stronger between the differential 
volume and GLDAS.As for GRACE, the search had to shift the 
time basis possibly due the way GRACE data are produced 
(no time scale accuracy). The comparison of the autocorrela-
tion power spectra for both time series indicates that the only 
common feature is the strong annual peak of𝑝𝑝 = 12. Low pe-
riod features are particularly absent from GLDAS data. 

The application of the LS-SVMregressor during validation 
(which corresponds to the application of the obtained regres-
sor after training) confirmed the generalization power of the 
method with all the cautionary notes associated to the validity 
of GRACE and GLDAS data. The LS-SVM method reproduces 
the 2013-2014 peak absence for various values of the advanced 
month (n) as shown in Fig. 6. However, LS-SVM was more 
successful with GRACE data than GLDAS, although, with this 
last time series, the overal trend was captured (Fig. 7). Also, 
during regressor validation, a continuous decrease in the ge-
neralization error for both GRACE and GLDAS was found as 
the number of past values (that is, past information) was in-
creased. However, for GRACE, the error shown a minimum 
around 𝑝𝑝 = 22 months (top of Fig. 5). Since GRACE data is 
limited to 153 points in this study (with many lacking months 
being interpolated between adjacent values), it is hard to make 
any generalization and to conclude that 22 months is the op-
timal number of periods to be used in LS-SVM for GRACE 
forecasts. In other words, this result may be an artifact of the 
implicit erros associated to the time series. Nor were the au-
thors able to find any associated process that could explain 
such time period. Perhaps by including more cells, it would be 
possible to confirm the trend. LS-SVM allows data to be en-
tered in an arbitrary way so that time series from adjacent 
GRACE cells could be added to the input training set{𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖} to 
further reduce the regressor error at a specific location. This 
procedure, and their resulting minimized errors - which 
should implement a type of cell search in order to find the 
most contributing ones - could map the regions around a giv-
en cell that are most relevant to the generalization, thus estab-
lishing a stronger type of “learning'' correlation. Such search 
must not be limited to neighbourEWT time series but could 
use other climate-related data as, for instance, monthly sam-
pled ocean's temperature oscillations, El Niño and La 
Niña[64][65]. According to this idea, first principle informa-
tion assists in the choice of relevant data sets to be used in the 
input vector and possibly the regressor dimension while the 
method establishes the generalization rule in accordance to its 
internal formalism. 

The period between 2013-2014 was characterized by a water 

Figure 6GRACE data superimposed to LS-SVM forecast for 
several values of n to expose regressorvalidation (using test 
data, 𝜎𝜎 = 2 and 𝛾𝛾 = 22). 

Figure 8(a) GRACE data ending in Jan-165 superimposed to 
precipitation on Cantareira WSS (in mm). The last three points 
correspond to LS-SVM forecasts for GRACE (Feb, Mar, Apr of 
2015). (b) The same of (a) for last available GRACE data (Abr-15) 
and precipitation data. LS-SVM forecast for GRACE for May, Jun 
and Jul of 2015. 

Figure 7 GLDAS data superimposed to LS-SVM forecast for 
several values of n to expose regressorvalidation (using test 
data, 𝜎𝜎 = 3 and 𝛾𝛾 = 20). 
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shortage crisis never seen in a city with 11 million people. As a 
consequence, it becomes particularly important to assess all 
available data in order to better characterize the situation, both 
in terms of atmospheric or climate causes as of their ground 
water potentials. The availabledata show a rich but yet partial-
ly unknown dynamics. As the number of pumping wells in 
the city of São Paulo has increased since the onset of the crisis, 
the assessment of the groundwater potential adds importance 
to the task. On the other hand, the resurgence of the peak and 
the continuous increase in the LS-SVM EWT values after Apr-
15 indicated that the water crisis was an exception rather than 
an enduring situation. Its impact is, however, enduring as the 
State Government was obliged to reorganize the way water is 
distributed to the city of São Paulo, reducing the dependence 
on Cantareira WSS and campaigning for population water 
saving. Furthermore, from now on lows in differential vo-
lumes of all WSS should be closely monitored in pair with 
actions to avoid a critical state with far more dangerousconse-
quences. This new hydric regime is established in southern 
Brazil together with an increase in the droughts in the north-
ern parts (which historically are characterized as semi-arid 
regions). 

In short, the application of GRACE EWT data, using statis-
tical learning tools and the time series for São Paulo city were 
shown as an opportunity to test such methods in their ability 
to predict system behaviour in the post-crisis period time. 
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